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A quasi-steady-state description of processes in the gaseous phase is used in most theoreti-
cal studies on determining the acoustic admittance of the burning surface of a condensed sys-
tem (e.g. [1-6]), so that the results obtained can be used for interpreting experimental re-
sults on acoustic combustion instability at frequencies less than 104 Hz. An examination of
the interaction of weak harmonic compression waves possessing a combustion zone, taking
into account gaseous-phase time delay, valid up to frequencies of 10%-10° Hz, was conducted
using different models of the combustion zone in [7-9]. In this work a calculation of the acous-
tic admittance of the burning surface of a condensed system, taking into account gaseous-
phasetime delay, is performed withinthe framework of a two-zone model of combustion similar
to the model of [7]. The variability of the combustion temperature under non-steady-state
conditions, the dependence of the completeness of combustion on pressure, and the formation of
entropy waves when the compression waves interact withthe combustion zone is borne in mind
in formulating the fundamental equations.

1. Statement of the Problem. Model of the

Combustion Zone

The extent of the combustion zone even at gas-vibration frequencies reaching 10° Hz amounts to a
small fraction of the length of an acoustic wave in gaseous combustion products. This zone may therefore
be considered to be infinitely thin, coinciding with the surface of the condensed system, in analyzingthe
acoustic properties of a burning surface, and its acoustic properties can be described by the magnitude of
the acoustic admittance

L = — pycsbu, / 6p (1.1)

where 6u, is the range of variation of the discharge velocity of the gaseous combustion products from the
combustion zone under the effect of harmonic compressive disturbances with amplitude 6p, p, is the den-
sity of the combustion products, and ¢, is the sonic speed in the combustion products.

The calculation of the acoustic admittance of a burning surface reduces to determining ¢ from the
linearized equations that describe the reconstruction of processes in the combustion zone as the pressure
varies. In solving this problem it is necessary to consider the combustion zone as extended and to make
concrete assumptions regarding its structure.

A one-dimensional model of the combustion of a homogeneous condensed system is examined. It is
assumed that the combustion zone has the structure schematically depicted in Fig. 1. A coordinate system
bound to the condensed-phase surface, which passes through the point x=0, is selected for writing the equa-
tions. The k phase (regions 1 and 2) is homogeneous and is characterized by a constant density py, heat
capacity ¢y, and coefficient of thermal conductivity A;. A chemical reaction, which leads to gasification of
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| T the k phase, occurs in the shallow surface layer xj < x< 0 (re-
gion 2). It is assumed that heat release in the k phase, under
both steady and nonsteady conditions, maintains a constant value
equal to Q;. Chemical reactions do not occur in the preheating
zone of the k phase, —w < x< xj. The initial temperature of the
k phase is T, andthe surface temperature is Tg. The tempera-
zJ Ty Z ture gradients on the boundaries of the region 2 in the k phase
Fig. 1 are, respectively,

(@T / dr)e; = @;and(dT / da)emy = ¢,
Rel- /0% 7 N\ Z jl The region 0< x<x, (region 3) is the preheating zone o the

gasification products. It is assumed that the extent of the reac-
tion zone in the gas is small in comparison to the dimensions of
the preheating zone, since exothermic chemical reactions in the
gas proceed in an infinitely thin region near the plane x_, which
is the flame front in the gas.
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The magnitude of heat release in the gaseous-reaction zone
Q, is assumed to depend on pressure. The region x> x,_(region
4) is filled with gaseous combustion products heated to the com-
bustion temperature T, .

H
: The instability of processes in each of these regions of the

combustion zone can be characterized by transient periods which,
for the regions 1-4, are, respectively, 1;~0.3-10 % sec, T,~
7-107% sec, T3m2-107% sec, and 7,4 107¢ sec, using approximate
estimates [10]. It is evident that the instability of processes in
the preheating zone in the gas must be taken into account for
acoustic oscillations with frequencies up to 10%-10° Hz.
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\\J A \ 2. Edquations in the Preheating
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\\/ ‘ Gas Zone

0z 0’ L fz The equations of mass, momentum, and energy conserva-
tion have the form

as

Re g% I 7

Bpy’ | 9t + m’ | 6z = 0 2.1)
Ouy’ | 0t + uy'0uy’ | 0z = — (1/p,)(0p" / 02) @.2)
oo Ty (G + w5 ) — 5 (e ZE) =0 (2.3)

in the preheating region of the gaseous decomposition products of the k phase from Ty' to T, ' between the
surface of the k phase (x=0) and the flame front &=x).

Values that are time dependent are denoted by primes here; p,', Ty, u;, and s' are the density, tem-
perature, velocity, and entropy of the gas; p' is pressure ; and m'=p,'u,' is the mass velocity. The heat
capacities cp and cy and the coefficient of thermal conductivity A, of the gasification products are assumed
to be constant. The thermodynamic characteristics of the gasification products satisfy the equation of state
of an ideal gas:

P’ = (Bup,' Ty @2.4)
where R is the universal gas constant, and p is the molecular weight,

Under steady conditions it follows from (2.1)-(2.3) that

dm/dz =0, m= [32u2 = const (2.5)
dug
Uy — —I———-————O (2.6)
dar
qusz'E (7\'2 d; ) =0 2.7

Eq. (2.6) is transformed into the form
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dlnp [ dlnue 7T ug? e . »
—da [——"dz } =Yg T—c—v, Cz='l""; @.8)

It is always true that u,/c,2 <1 (usually u, /cy~ 1073) for the combustion of condensed systems, so that
we have from (2.8)

dinp/dz<<dlnu,/ds (2.9)
Using the relationship
R R AT S
dz g )p dz ' \8p )r, dx = Ta dr  pals dz
we may write, by taking (2.9) into account,
2= (b ) — mep G = 0 (2.10)

instead of (2.7).
The boundary conditions for Eq. (2.10) on the k-phase surface (x=0) have the form

dTs

T5(0)= T, }%7&— — meply —mey Ty — mQ, (2.11)

We obtain, from (2.10) and (2.11) for the temperature distribution in the heated gas layers,

T f T mepx
Ty@ =20t o (1, ATt & Jexp (2] (2.12)

The coordinate of the flame front, where the combustion temperature T, reaches (c;T,+Q;+Qy(p)) /cp
is given by
cply —arTo— Qu

o @.13)

2, (T'y) = -%— In

Formulas (2.5), (2.12), and (2.13) describe the stationary distributions of a mass and temperature
flow in a thermal layer in a gas occupying the region between the surface of the condensed phase, x=0 (the
cold boundary of the thermal layer), and the flame front in the gas, x=x_ (the hot boundary of the thermal
layer).

The behavior of the thermal layer in the gas in nonsteady combustion is determined by Eqs. (2.1)-
(2.3). We will linearize Eqs. (2.1)-(2.3), assuming that the weak harmonic compressive disturbances p'=
p+6pel®t 6p/p<1 induce weak variations in all the values in the combustion zone, such that

f (@ §) = f () + Of (z)eiet

where &f is the amplitude of the disturbance of an arbitrary characteristic variable f' of the combustion
zone, and Of /f<<1.

Following linearization of Eq. (2.1) we obtain, by taking (2.4) into account,

“dsm _ iopp iop
dz  RTZ(@) 87, — RT2 (@) op (2.19)

Here T, (x) is the stationary temperature distribution (2.12).

The linaerized motion eguation (2.2) can be represented in the form

ha Suz uz  d(Bus [ umw) bus dus/mw) _ _ 1 pw d(ﬁp/p;)) 1 pa? Gﬂ-d(p/po) 2.15
mepliso Uz + Y dn + use dn TMo®2 pa2 dn + TMp2  pa?  pm dn ¢ )

i®

Here uy, py, and py, are the stationary values of the gas velocity, pressure, and density at some point
xy of the preheating zone in the gas, for example, at the surface x=0 of the k phase, 7 =mcpx/7\.2, and M02=

o2/ (Y Do/ Po)-

We find in this case, by estimating the order of the terms in (2.15), taking into account (2.9), the com-
pressive disturbance in the thermal gas layer:
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8p = const (2.16)

to within terms on the order of M2.

By expressing the entropy derivatives in (2.3) in terms of the temperature and pressure derivatives
and linearizing the equation obtained, taking into account (2.1), (2.4), 2.9), and (2.16), we may obtain

d d8T i
7&?[’“2 T — ¢pT3 () bm — chGTz] = %”—c”—ﬁp (217

Equations (2.14) and (2.17) for 6m and 6T, describeto a linear approximation thermalmass exchange in
the heated layer of the gaseous combustion zone for small deviations from the steady state induced by har-
monic pressure oscillations with amplitude dp, and are the fundamental equations for calculating acoustic
admittance within the framework of the model assumed. E is necessary to formulate boundary conditions
at the cold and hot boundaries of the thermal layer in order to solve these equations.

3. Boundary Conditions

The following conditions result if we require that the mass, thermal, and energy fluxes be continuous
on the k-phase gasification surface:
z=0: 6m = ém,, 6T, = 8T, (3.1)
M(dB T, [ dx) = MO, + (cp — 1)m8T + (cp — )T 8m,

Here the values 0 Tg, 6my, and 0 ¢4 are related by additional relationships which must be determined
from the solution of the nonstationary-temperature-distribution problem in the k phase.

The variation in the temperature in the preheated k-phase layer is described by the equation
016187y / 8t) + my'ey (0T, / 0x) = (2T, [ 8a?) 3.2)
with boundary conditions
T/(x = —o0) =Ty Ty’ (0) = T (3.3)

where Ty' is the temperature of the k phase, and my' is the mass-burning rate. In writing down (3.3) we have

assumed that the width of the reaction zone of the k phase is small (xj= 0), since the hot boundary of the pre-
heating zone of the k phase (region 1) is found at the point x=0 and Ty'{&;)=Tg'. At the same time, when re-

actions are present in the k phase, we cannot ignore the difference in the temperature gradients on the inner
and outer boundaries of the reaction zone of the k phase (¢; and ¢4'). The gradients ¢;' and ¢4' are related
to the energy conservation law in the region 2:

Mo — Mo = myQy (3.4)
The stationary temperature distribution in the preheated layer of the k phase has the form
Ti(z) = Ty + (T, — Tp) exp (meyz / by) (3.5)
The temperature gradient on the hot boundary of the thermal layer of the k phase is given by
‘ ¢, = dz:;x(z) x="°i= "‘;1:1 (Ts_TO)

The reconstruction of the temperature profile in the thermal layer of the k phase under the effect of
weak compressive disturbances is described by the linearized equations (3.2) and (3.3):

a7
M ;zzl My dgfl — i0p,¢,6Ty = 8m; 61::?1 (Ts—Ty) EXP( ”;:01 -77) @.6)
8Ty(x = — 00) =0, 8Ty(z = 0) = 87, (3.7

The solution of the problem (3.6), (3.7) has the form

©A1p1 2h OA1pL M
Bi=1+VIt+&n, o= (A1010) / (cyma®)

8T, (2)= [GTs P L T . To)] exp<”““ le) 4 g medm op py exp ( maoy x) -
3.

By differentiating (3.8) and setting x=0 we obtain a relationship between the disturbances of the tem-
perature 0Tg, mass flow 6m,, and temperature gradient ¢ at the preheated-layer—k-phase reaction zone
boundary:
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i@2—B) dmi , B OT, 8p,
2Q1 Tf"]——z- T —To —< =0 (-9)

We obtain after linearizing (3.4),
M18%; — 2,8, = Qubm, (3.10)

One more relationship between 6Ty, 6 my, and d¢. is determined from an approximation analysis of
the processes in a thin zone of the k phase. It is assumed that a zeroth-order chemical reactionproceeds in
the reaction layer of the k phase. We may write, for the temperature in this zone,

M(BTy [ da?) — myey(dT, | dz) + p,0,®y(Ty) = 0 (3.11)

2=, I1=1T; ¢ =g

T = 0, Tl = T51 P = @ (3‘12)

Here &;(Ty) =Bexp(—E;/RT,) is the dependence of the chemical reaction rate on temperature, and Q,
is the heat release, the dependence of all the values in (3.11) on time being determined in this case by the
time dependence of the boundary conditions.

By approximately integrating (3.11) and (3.12) we may obtain (e.g., [11])

M@ — Ay = %ﬂrmm exp ( ! ) (8.13)

T RT,

We determine, by linearizing (3.13) and using (3.10), a relationship between the amplitudes of the dis-
turbances dmy of the mass-gasification rate, of the surface temperature 6 Tg, and of the temperature gradi-
ent at the reaction—Zone—k—phase-thermal—layer—é (pi boundary in the form
6T

-i— a- ) AT, =0 3.14)
— Qs _ MpiBs { {251
1= 5@, —Tg ' 517 s %P \™ FT, )

We may represent the boundary conditions (3.1) for the functions d m(x) and 6 T, (x), by using formulas
(3.9), (3.10), and (3.14), in the form

z=0: ém = dmy, 8T, = G;my, dOT,/dz = Gy6m, (3.15)
Y . TCES YRR A N

my

_ mo _ aIs—=Ty (c1—cp) Ts
G 7\4 (Zl - 1 + ) 7\42 [1 + c1 (Ts _ To)]

The boundary conditions on the cold boundary of the gaseous zone (3.15) contain the mass-gasification
rate disturbance 6 m,, so that the solutions of the ordinary differential equations (2.14) and (2.17) under the
conditions (3.15) will also contain the value 6 my, and to determine the latter it is necessary to use condi-
tions on the hot boundary of the gaseous preheated zone.

We return to deriving the boundary conditions on the flame front in the gas, which is the hot boundary
of the preheated zone and which separates the combustion products from the thermal gas layer. Under steady
conditions the coordinate x, of the flame front is determined by formula (2.13), while under nonsteady con-
ditions the position of the flame front is time-dependent [x' =x! (t)].

By considering that a stationary dependence of the mass-combustion rate m, on the thermodynamic
conditions at the flame front in the gas remains valid for small deviations from steady combustion condi-
tions, we may write

e a2yl (3.16)
%

_{élnm 3} Ts— T

_—(611113*)"['*’ 8“( nm) (T To), ’l,'=_3T* 0

The parameters n and € can be determined from the theoretical or experimental stationary depen-
dence m, =m,_(, T,). Under steady combustion conditions, my=m= m, =const. The mass flow m' through
the flame front dlf_fers under nonsteady conditions from the mass-combustlon ratem_ ! in the gas. At the
flame front x_'(t) we have the 1elationship

my' = m'(xy') — pg'dzy’ [ dt 3.17)
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ReZ-10°? ,/,/"\\ AP We obtain after linearizing (.17), a formula that relates the dis-
15 /! F o turbance 0m,_ of the mass-combustion rate in the gas to the disturbance
’ 'I / of the mass gas velocity 6m(x ) at the flame front and the disturbance of
/ ! /2 the position of the flame front:

ISsg=—F Smy = 8m () — i0p,074 (3.18)

TR We write the energy conservation law at the flame front under non-
steady conditions, using the definition of a flame front in a gas as a sur-
-85 face at which heat Q, is released, in the form

—myQa(p) +ho TX| =1, 2] (3.19)

dx Ix*’

=10 ~5
"* ’ Vfﬂ" Hz Combustion products under steady combustion conditions have a

constant temperature T, and the right side of Eq. (3.19) vanishes. Non~-
Fig. 4 uniformities in the temperature and in other values, related to the propa-
gation of harmonic, acoustic, and entropy waves of the form exp (iwt—
ikx), appear in the combustion products under these nonsteady conditions.
A The wave numbers of these waves are as follows (e.g., [12]:

- -~__: 0 s Wy _u

/\\ et Fr=ig, A+ M), k= i =M (M* - i)

/ ] / o~ 0 A VITES g e (3.20)
oy Uy 2Qs ’ 2

[

Values related to acoustic waves propagating in the positive and
negative directions of the x axis are denoted by the subscripts + or -,
Fig. 5 respectively, while values related to an entropy wave are denoted by
the subscript 0. Relationships between the disturbances in acoustic and
entropy waves, described to within terms on the order of M, 2, have the

LTy =7 7 Tog O,

form
opt  Sp,E 1 8pE 6T, FE —1 8pt
+ — 1 % 0P Pe” 2 0P Y10
but =t o= T s T T p
ou,® =0, 8pV =0, o7, /T,=—8,0, (3.21)

The distrubances of all the thermodynamic parameters and the gas velocity in the combustion products
are represented as the sum of the disturbances transmitted by each of the waves, in particular

8p = 8p* +-8p7,  Om(z4) = Py Buy* + Suy) + By (Bpst + 80 + 80, 8T, = 8T,* 4 8T, 4 6T, (3.22)

We obtain from (3.22), by taking into account that the temperature disturbances are of a wave char-
acter, that

ddTy [ dz = k*8Tyr + k6T~ + KO8T, ® (3.23)
We find by linearizing (3.19) and taking into account (2.12) and (3.20)-(3.23), that
T doT, 2 —17,
3my Qs (p) +m ”Lp* adp — Myt | — 72 Q2 (p) bz == AK® («ST* — TT - Bp) (3.24)

The quantity
a = (dQ; / dp) (p/cp Ty)
characterizes the variation in the completeness of combustion as the pressure is varied.
We obtain by using the given combustion temperature, T, '=Ty'(x, ") and formula (2.12), that
8Ty = 8T y(zy) + (mQu(PIhy )07 (3.25)

We obtain the boundary condition for the functions 6 mx) and 6 Ty(x) on the surface x=x, by eliminating
6m,, 6T,, and 6x,_from (3.16), (3.18), @.24), and (3.25):
4 A dsT.
(Qz (p) + m) om (zy) + (Mk(“) _ TET_;) 8Ty (%) — Mg d; 5

=1
A= (K — tap, — micy /) (2 + 2721) "0,

(22 g -, T e g0 Sep=0  (3.26)
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Condition (3.26) allows us to determine the value 6 m; of the mass-velocity disturbance on the surface
of the k phase, which is the eigenvalue of the problem, as well as to obtain the complete solution of the non-
steady reconstruction problem of the thermal gas layer under the effect of a compressive disturbance Op-

4. Results of the Calculations and Discussion

We obtain from (1.1) using the relationships (3.21) and (3.22) the following for the acoustic admittance
of 2 hot surface of a condensed system:
o o Le[8m iz 1Op | 8Ty sOp
= Tc*[ m /p+T* P 1] (4.1
Further, expressing 6T, in terms of dm(x, ) and 6 Ty(x, ) we obtain from (¢.1) using Egs. (3.16), (3.18),
and (3.25),

o o i -1
A= iQacpTy

&

In @.2) the values

dm{z,) /op déT; zo) /8
m /I’léu-l T, /P

are determined by solving the problem (2.14), (2.17), (3.15), (3.26). An acoustic wave is amplified when re-
flected from the combustion surface of a condensed system of the real part Re¢ of the acoustic admittance
is negative.

The calculation of the real part Reg of the acoustic admittance reduces to the numerical integration
of a system of four first~order ordinary differential equations in real variables on the segment [0, X, ] with
boundary conditions (3.15), (3.26) at the endpoints. Integration conducted by the Runge—Kutta method was
begun from the point x=0 with the conditions (3.15), and the condition (3.26) was satisfied at the right end
point X=x_.

. If condition (3.26) is not satisfied, the value of § my at x=0 is changed and integration is repeated for
a new value of 6m;. Results are presented below of a calculation of the dependence of Re ¢ on frequency
according to Eq. @.2) for the following values of the parameters: A=MA,=5.10-¢ cal/sec-cm:°K, ¢; = ¢, = 0.33
cal/g <K, p;= 1.6 g/em3, m = 2g/sec-cm?,p = 50 atm, p =29, T,= 300° K, T,=6000K, e¢=1,
v =1.25, z; =10, ¢, 4 @, = 800 cal/g. In pace of the variable n we used the parameter v=(8 In m /8 lnp)To,
related to n by the relation y=n+&7 ', A value of ¥ =0.67 was assumed in the calculations.

The dependence of Re ¢ on frequency for different values of heat release Q in the k phase (¢=0) is
depicted in Fig. 2 by solid curves. Results of a calculation of the dependence of Re ¢ on frequency for the
same values of the parameters but without taking into account gaseous-phase time delay [2] are depicted by
dotted curves for comparison. Values for @ of 20 cal/g, 40 cal/g,and 80 cal/g correspond to curves 1, 1';
2, 2'; and 3, 3', respectively. Curves 4, 4' were obtained for the case of an endothermic reaction in the k
phase with Q;=—80 cal/g. It is evident that the influence of gaseous-phase time delay is appreciable begin-
ning with frequencies on the order of 10% Hz. A calculation of gaseous-phase time delay can lead to either
an increase or a decrease in the tendency of the condensed system towards acoustic-combustion instability.
The gaseous-phase time delay also leads to the appearance of a maximum of Re t at high frequencies, which
corresponds to the greatest attenuation of the acoustic waves when reflected, which shifts towards lower
frequencies with increasing Q.

In Fig, 3 the dependence of Re ¢ on frequency for different values of @ (curves 1, 1' correspond to a =
0.1, curves 2, 2' correspond to & =0.3, and curves 3, 3' correspond to & =0.5) and of heat release Q in the
k phase (curves 1-3 correspond to Q; =20 cal/g, while curves 1'-3' correspond to @ = 80 cal/g) is shown.
The tendency of the condensed system toward amplification of the acoustic compression waves increases
over the entire frequency band with increasing «.

In this work a boundary condition on the surface of the condensed phase, which takes into account to
a quasi-steady-state approximation the extent of the chemical reaction zone in the k phase that leads to gas-
ification, was used for calculating the size of Re ¢. In a number of other studies (e. g., [13]) it was assumed
that the passage of the k phase into a gas is a surface process whose mass rate is determined by the law

my ~ exp (—E,/ RT)
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For this model we have, in place of the condition (3.14) on the surface of the condensed phase,
om, / my = (E,/ RT 8T, @.3)

Dependences of Re ¢ on frequency, calculated using conditions on the surface of the condensed phase
in the form (3.14) and in the form (4.3), are presented in Fig. 4 by solid curves and dotted curves, respec-
tively, for comparison. A value for Q; of 80 cal/g corresponds to the curves 1, 1', while a value for Q of
20 cal/g corresponds to the curves 2, 2'.

A calculation was performed in [9] of the acoustic admittance of the hot surface of a condensed sys-
tem, taking into account the spatial extent of the simple chemical reaction zone in the gas. Dependences
are presented in Fig. 5 of the real part r=—c, Re¢ /yu, of a hot surface on log Q, as calculated in [9] (dot-
ted curve 2) and in this work (solid curve 1), given identical values of the parameters of the condensed sys-
tem.

It is evident that, by taking into account the distributive nature of the chemical reaction in the gas, we
arrive at more expressed extrema on the acoustic admittance—frequency curve. High qualitative and satis-
factory quantitative agreement between the curves is observed.

Inconclusion, we note that a simplified scheme and approximate values for the kinetic constants of the
chemical reactions were used in the calculation conducted. Therefore, results of the calculation can be
used only for explaining the qualitative features of the dependence of acoustic admittance on different char-
acteristics of a combustion process (in particular, on heat release in the k phase), which corresponds to the
contemporary state of experimental investigation in the field of acoustic combustion instability.
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